Math 103 Day 7: Trig Derivatives and the Chain Rule

Ryan Blair

University of Pennsylvania

Thursday September 30, 2010

Outline

(1) Trig Derivatives

More Trig Derivatives

More Trig Derivatives

(1) $\frac{d}{d x}(\cos (x))=-\sin (x)$

More Trig Derivatives

(1) $\frac{d}{d x}(\cos (x))=-\sin (x)$
(2) $\frac{d}{d x}(\tan (x))=(\sec (x))^{2}$

More Trig Derivatives

(1) $\frac{d}{d x}(\cos (x))=-\sin (x)$
(2) $\frac{d}{d x}(\tan (x))=(\sec (x))^{2}$
(3) $\frac{d}{d x}(\csc (x))=-\csc (x) \cot (x)$

More Trig Derivatives

(1) $\frac{d}{d x}(\cos (x))=-\sin (x)$
(2) $\frac{d}{d x}(\tan (x))=(\sec (x))^{2}$
(3) $\frac{d}{d x}(\csc (x))=-\csc (x) \cot (x)$
(9) $\frac{d}{d x}(\sec (x))=\sec (x) \tan (x)$

More Trig Derivatives

(1) $\frac{d}{d x}(\cos (x))=-\sin (x)$
(2) $\frac{d}{d x}(\tan (x))=(\sec (x))^{2}$
(3) $\frac{d}{d x}(\csc (x))=-\csc (x) \cot (x)$
(3) $\frac{d}{d x}(\sec (x))=\sec (x) \tan (x)$
(3) $\frac{d}{d x}(\cot (x))=-(\csc (x))^{2}$

Chain Rule

If g is differentiable at x and f is differentiable at $g(x)$, then the composition function $F=f \circ g$ defined by $F(x)=f(g(x))$ is differentiable at x and

$$
F^{\prime}(x)=f^{\prime}(g(x)) g^{\prime}(x)
$$

Change of variable rule for limits
If $\lim _{x \rightarrow 0} f(x)=0$, then

$$
\lim _{x \rightarrow 0} g(f(x))=\lim _{f(x) \rightarrow 0} g(f(x))=\lim _{u \rightarrow 0} g(u)
$$

